ATP-Dependent Histone Octamer Sliding Mediated by the Chromatin Remodeling Complex NURF

نویسندگان

  • Ali Hamiche
  • Raphael Sandaltzopoulos
  • David A Gdula
  • Carl Wu
چکیده

Drosophila NURF is an ATP-dependent chromatin remodeling complex that contains ISWI, a member of the SWI2/SNF2 family of ATPases. We demonstrate that NURF catalyzes the bidirectional redistribution of mononucleosomes reconstituted on hsp70 promoter DNA. In the presence of NURF, nucleosomes adopt one predominant position from an ensemble of possible locations within minutes. Movements occur in cis, with no transfer to competing DNA. Migrating intermediates trapped by Exo III digestion reveal progressive nucleosome motion in increments of several base pairs. All four core histones are retained quantitatively during this process, indicating that the general integrity of the histone octamer is maintained. We suggest that NURF remodels nucleosomes by transiently decreasing the activation energy for short-range sliding of the histone octamer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alternative Splicing of NURF301 Generates Distinct NURF Chromatin Remodeling Complexes with Altered Modified Histone Binding Specificities

Drosophila NURF is an ISWI-containing chromatin remodeling complex that catalyzes ATP-dependent nucleosome sliding. By sliding nucleosomes, NURF can alter chromatin structure and regulate transcription. NURF301/BPTF is the only NURF-specific subunit of NURF and is instrumental in recruiting the complex to target genes. Here we demonstrate that three NURF301 isoforms are expressed and that these...

متن کامل

Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF.

Nucleosome Remodeling Factor (NURF) is an ATP-dependent nucleosome remodeling complex that alters chromatin structure by catalyzing nucleosome sliding, thereby exposing DNA sequences previously associated with nucleosomes. We systematically studied how the unstructured N-terminal residues of core histones (the N-terminal histone tails) influence nucleosome sliding. We used bacterially expressed...

متن کامل

Distortion of histone octamer core promotes nucleosome mobilization by a chromatin remodeler.

Adenosine 5'-triphosphate (ATP)-dependent chromatin remodeling enzymes play essential biological roles by mobilizing nucleosomal DNA. Yet, how DNA is mobilized despite the steric constraints placed by the histone octamer remains unknown. Using methyl transverse relaxation-optimized nuclear magnetic resonance spectroscopy on a 450-kilodalton complex, we show that the chromatin remodeler, SNF2h, ...

متن کامل

DNA sequence- and conformation-directed positioning of nucleosomes by chromatin-remodeling complexes.

Chromatin-remodeling complexes can translocate nucleosomes along the DNA in an ATP-coupled reaction. This process is an important regulator of all DNA-dependent processes because it determines whether certain DNA sequences are found in regions between nucleosomes with increased accessibility for other factors or wrapped around the histone octamer complex. In a comparison of seven different chro...

متن کامل

Activation domains drive nucleosome eviction by SWI/SNF.

ATP-dependent chromatin remodeling complexes play a critical role in chromatin dynamics. A large number of in vitro studies have pointed towards nucleosome sliding as the principal remodeling outcome of SWI/SNF action, whereas few have described histone octamer transfer as the principal outcome. In contrast, recent in vivo studies have linked the activity of SWI/SNF to histone eviction in trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 97  شماره 

صفحات  -

تاریخ انتشار 1999